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DEUTERIUM ABUNDANCE IN THE LOCAL ISM AND POSSIBLE

SPATIAL VARIATIONS

JEFFREY L. LINSKY

J1LA, University of Colorado and NIST, Boulder, CO 80309-0440 USA

Abstract. Excellent HST/GHRS spectra of interstellar hydrogen and deuterium Lyman-a absorption

toward nearby stars allow us to identify systematic errors that have plagued earlier work and to

measure accurate values of the D/H ratio in local interstellar gas. Analysis of 12 sightlines through

the Local Interstellar Cloud leads to a mean value of D/H ffi ( 1.50 -t- 0.10) x 10 -5 with all data points

lying within 4-ltr of the mean. Whether or not the D/H ratio has different values elsewhere in the

Galaxy and beyond is a very important open question that will be one of the major objectives of the

Far Ultraviolet Spectroscopic Explorer (FUSE) mission.
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1. Introduction

An accurate measurement of (D/H)LISM, the D/H abundance ratio in the local

interstellar medium (LISM), and an assessment of spatial variations of D/H in the

Galaxy are required to address two critically important questions in contemporary

astrophysics. First, the largest credible D/H ratio in our Galaxy will provide a lower

limit to the primordial D/H ratio, (D/H)p)im, which constrains the critical density,

f2B, of baryons present in both luminous and "dark" forms. Second, (D/H)LISM
is the end result of an incompletely understood complex set of chemical evolu-

tion processes in the Galaxy. Comparison of the (D/H)LISM ratio with D/H ratios

characteristic of the protosolar nebula and in interstellar gas located elsewhere in
the Galactic disk and halo will test our understanding of stellar evolution, stellar

mass loss, interstellar physics, and the rate of infall and chemical composition of

halo gas. Testing Galactic chemical evolution codes against both D/H and metal
abundances in different environments with different histories will lead to a more

detailed understanding of the evolution of our Galaxy and will test for the first time
the mixing time scales for interstellar matter.

Recently, the precise value of (D/H)LISM has acquired greater importance as the

previously announced high value of (D/H) -- 2 × 10-4 in the absorption spectrum

toward Q0014+813 is apparently spurious (Tytler et al. 1996). Thus (D/H)LISM is

likely much closer to (D/H)prim than some authors had thought, and our understand-
ing of Galactic chemical evolution will be tested by a measurement of the small

difference (perhaps only a factor of 2) between (D/H)prim and (D/H)LlSM. Accurate

measurements of D/H are clearly required for such tests of the chemical evolution

codes and their underlying assumptions.

Lyman line absorption is generally recognized as the most reliable technique for
inferring the present value of D/H in our local environment. This is a consequence
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of the Sun being surrounded by a cloud of warm, partially ionized gas (e.g.,

Lallement et al., 1995; Wood and Linsky, 1997a) with very few molecules. At a

gas temperature of about 7,000 K (Linsky etal., 19 )3), the ionization and adsorption
on to grains is nearly the same for H and D. Witlt a line separation of 81 km s- 1,

Lyman-a absorption by H and D can be observ_ d with high S/N in HST/GHRS

spectra toward nearby stars, provided the hydrogt;n column density is not so large
as to obliterate the D line (Nut < 10187 cm-2). The launch of the Far Ultraviolet

Spectroscopic Explorer (FUSE) in 1998 will allcw us to observe the less opaque

higher Lyman lines to extend this method to more distant lines of sight (LOS). Other

techniques for measuring the D/H ratio, includin_ studies of deuterated molecules
in cold molecular clouds and the search for the de,uterium analog of the hydrogen

21 cm line, have major difficulties, leaving the Ly.aaan lines as the most useful D/H

diagnostics.

Ferlet et al. (1996) reviewed D/H measurem,_,nts obtained primarily with the

Copernicus and IUE spectrographs. These pre-HST studies of Lyman line absorp-

tion toward both hot and cool stars left a confuse_ picture in which the large range
of permitted values of D/H for each LOS left open the possibility that D/H spatial

variations of a factor of 2 or larger could be present on very short spatial scales.

The flood of beautiful new GHRS spectra has changed this picture dramatical-
ly. The first clear indication of this paradigm shft was the measurement of D/H

+0.14= 1.60_0.19 ) x 10 -5 for the Capella LOS (Lins _y et al., 1993; 1995). Since this

result lies outside of the published error bars for all of the previous results for this

LOS, I believe that the older results at least for he late-type stars are unreliable

because of systematic errors that were not considered when these lower quality

data were analyzed and thus not included in the published error bars. The GHRS
spectra have allowed us to develop analysis techniques that minimize these sys-

tematic errors, leading to far more reliable values of D/H. Table I summarizes the

results of these analyses of GHRS spectra.

2. Minimizing Random and Systematic Errol s in the Analysis of the Lyman
Lines

2.1. THE EFFECTS OF BETTER QUALITY DATA

GHRS echelle spectra have far higher S/N and res )lution (3.6 km s- 1) than Coper-

nicus (15 km s- I ) and IUE (25-30 km s- 1) specU a. Since the core of the Lyman-a

line is very saturated (optical depths of 105 - 105) and is located on the flat part

of the curve of growth, high S/N and spectral rest lution are critical for inferring H

column densities from the steep outer edges of t:ae core absorption profile. Even

with the best available GHRS spectra, however, the H column densities are usually

more uncertain than the D column densities. Acc_rate fits to the outer edges of the

core absorption alone may explain much of the pI evious scatter in the D/H values.
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Table I

Summary of GHRS Observations of the LISM.

287

Star d l b Grating 1 Clouds D/H (10- 5)

(pc) (°) (°) in LOS (in LIC) (others)

a Cen A" [1,2]

a Cen B [2]

Sirius [1,3,4]

Eri [11]

e Ind [5]

Procyon [6]

a Aql [1]

cr PsA [1]

Vega [1]

/5 Gem [11]

/3Leo [l]

Capella* [6,7]

/3 Cas [8]

[11]

/9 Cet [8]

/3 Pic [1]

ct Tri [11]

A And [5]

6 Cas [1]

HR1099" [8]

GI91-B2B [9]

cr Gem* [11]

HZ 43 [ 12]

31 Com ]81

[ll]

CMa [10]

1.3 316 -01 EA, EB G

1.3 316 -01 EA, EB G

2.7 227 -09 EB, M L+I

3.3 196 -48 EA, EB L

3.4 336 -48 EA, EB G/L

3.5 214 +13 EB, M L+I

5.0 48 -09 EB L+2

6.7 21 -65 EB

7.5 68 +19 EB L+2

10.6 192 +23 EA, EB L+I

12.2 251 +71 EB L+2

12.5 163 +05 EA, EB, M L

14 118 -03 M L

16 111 -81 EB, M 2

16.5 258 -31 EB L

18 139 -31 EA, EB L

24 110 -15 EA L

27 127 -02 EB L

33 185 -41 EA, EB, M L+2

48 156 +07 EB, M L+2

56 191 +23 EA, EB L+I

63 054 +84 EA, EB NGP

80 115 +89 EB, M NGP

(!.65)

1.44-0.4

1.6 -4-0.4

1.6 5:0.4

1.45:0.4

_f_+0.14
-vv--0.19

1.6 5:0.4

1.75:0.3

2.25:1.1

1.46 5:0.09

l a+0J
"_-0.3

1.4 ::h 0.4

187 240 -11 EB, M L+5 (1.65)

1.25:0.7

1.2 5:0.7

(1.65)

1.65:0.4

1.05:0.6

(1.),(1.5)

1.3 5:0.4

(1.6)

1.5 5:0.4

2.0 4- 0.4

Quantities in parenthesis are assumed D/H values that lead to good profile fits.

* These stars were observed twice. Capella, HR 1099 and cr Gem were observed near opposite

quadratures.

"_Gratings: EA = Echelle-A, EB = Echelle-B, M = G140M or G160M.

References: [1] Lallement et al. (1995), [2] Linsky and Wood (1996), [3] Lallement et al.

(1994), [4] Benin et al. (1995), [5] Wood et al. (1996), [6] Linsky et al. (1995), [7] Linsky

et al. (1993), [8] Piskunov e t al. (1997), [9] Lemoine e t al. (1996), [ 10] Gry e t al. (1995), [ 11 ]

Dring et al. (1997), [ 12] Landsman et al. (1996).

2.2. SYSTEMATIC ERRORS INTRODUCED BY COMPLEX VELOCITY STRUCTURE AND

UNCERTAIN HYDROGEN PREDICTORS

Another critical issue is the presence of absorption components at many velocities

in a stellar spectrum. For example, ultra-high resolution spectra of the Na I and Ca II

resonance lines typically show many closely spaced narrow velocity components
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Figure 1. Upper panel: comparison of the observed Echelle-A spectrum (noisy line) of t_ Cen B with

the assumed intrinsic stellar spectrum (smooth thin line)and the best constrained one-component
model fit (thick solid line). Middle panel: best two-corrlponent model with the absorption due to the

ISM component only (dotted line), absorption due to the H wall component only (dashed line), and

the total absorption (thick solid line). Lower panel: residuals between the observed profile and the

two-component fit (from Linsky and Wood, 1996).

even for short LOS (e.g., Welty et al., 1996). Since thermal broadening is much

larger in the low mass H and D lines than in the metal lines, it is difficult to isolate

the absorption due to individual velocity components in the H and D lines. One

can include these velocity components in the analysis of the H and D lines, but the

relative column densities observed in the metal I nes may not be good predictors
of the relative column densities in the H and D lines. It is commonly assumed that

N I and O I are good predictors of H I and D I c,)lumn densities because all four

species have nearly the same ionization potential; and thus should have the same

ionization equilibria. However, Vidal-Madjar (th{se proceedings) showed that for

the three velocity components along the LOS to the hot white dwarf G191-B2B,

the D/N column density ratios differ by a factor ¢,f 3 and the D/O column density

ratios differ by a factor of 10. Since there is nc apparent explanation for these

large discrepancies, one must conclude that eve:l N I and O I are not infallible

predictors of H column densities. Thus it is difficult to infer D/H for individual

velocity components along a complex LOS, and the inferred mean value of D/H
along a LOS could be biased by saturation.
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2.3. SYSTEMATIC ERRORS INTRODUCED BY HYDROGEN WALLS

Velocity components with column densities orders of magnitude smaller than the

main interstellar absorption component pose an especially difficult problem, since
these components are not detectable in metal lines, but they could be optically

thick in the H Lyman-t_ line. Linsky and Wood's (1996) analysis of the very short

(1.3 pc) LOS to c_ Cen A and c_ Cen B shows that by not including such velocity

components when they are present the inferred H column densities can be a factor

of 2 too large and the D/H ratios can thus be a factor of 2 too small.

The upper panel of Figure 1 shows the observed Lyman-a profile toward a Cen

B and Linsky and Wood's best fit model in which the velocity and temperature of
the interstellar H I are constrained to be the same as the values obtained by fitting

the D I, Mg II, and Fe II lines. Clearly there is missing opacity near zero observed

flux on the red side of the interstellar absorption, indicating the need to include

additional absorption by gas that (i) is redshifted compared to the interstellar flow
velocity of 18.0 km s -l, (ii) is hotter than the interstellar gas (required to fit the

gentler slope of the red side of the absorption compared to the blue side), and
(iii) has a relatively low column density (the additional absorption has no Voigt

wings). Because there is missing opacity at zero flux, no sensible change in the

assumed intrinsic stellar profile can explain the discrepancy. The middle panel of

Figure 1 shows their least-squares fit to the observed profile by a two-component

model. The first component of this model has the same interstellar velocity and

broadening parameters as those derived from the D I, Mg II, and Fe II lines, but
a smaller hydrogen column because the second component will explain the deep

absorption on the red side of the interstellar absorption feature. The gas in the

second component turns out to be hot (T = 29,000 + 5,000 K), has a low column
density (log NH I ----14.74 + 0.24), and is redshifted by 2-4 km s-l relative to the

main component of the interstellar gas. Given the highly saturated nature of the
main component, the inclusion of this second component, even though it has only

1/1000 the H column density of the first component, lowers the hydrogen column

of the first component by a factor of 2 and thereby raises the inferred D/H ratio
from _ 6 × 10-6 to (1.2 + 0.7) × 10 -5. The uncertainty in D/H is large because

there are many parameters to be determined.
When Linsky and Wood derived these results they were unaware of the location

of the second absorption component of H I along the LOS to c_ Cen. The loca-

tion became clear later at the 1995 July 12-13 meeting of the IUGG in Boulder,

Colorado, where Baranov, Zank, and Williams presented their calculations of the

interaction between the solar wind and the incoming interstellar flow. Their models

(Baranov et al., 1995a; 1995b; Pauls et al., 1995), which include charge exchange

between the outflowing solar wind protons and the inflowing H I atoms, show that

on both sides of the heliopause there is a region of decelerated, hot hydrogen with

higher density than in the LIC (see Fig. 2). This H I pileup region, which is located
about 200 AU in the upstream direction (depending on the proton density in the
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LIC), has been called the "hydrogen wall." Becau _e the computed column density,

temperature, and flow velocity of H I in the hydrcgen wall agree with the parame-
ters derived independently for the second compcnent toward c_ Cen, Linsky and

Wood (1996) concluded that the second compont;nt originates in the wall around

the heliosphere. Before this time the hydrogen _:all was an interesting theoreti-

cal concept with no observational confirmation, a.though Lyman-a backscattering
observations (e.g., Qu6merais et al., 1995) indicated that nHl increases outward

toward the heliopause.

Do hydrogen walls exist around other stars? A stellar hydrogen wall would be

seen as a second absorption component shifted to _.horter wavelengths compared to

the interstellar gas flowing toward the star, becaus_ in order to detect the stellar wall

it would have to be viewed from the upwind direction. Wood, Alexander, and Linsky

(1996) found that a one-component model for tt_e interstellar absorption toward

e Ind could not explain the absorption on the blue side of the interstellar Lyman-
o_ line. They concluded that a second component blueshifted by 18 + 6 km s-1

with respect to the interstellar flow was needed with logNH I = 14.2 + 0.2 and

T = 100, 000 + 20, 000 K. The high temperature and large blueshift are consistent

with the higher inflow velocity of 64.0 km s-1 toward this rapidly moving star.
They also found evidence for a hydrogen wall around A And with a smaller blueshift

and temperature. Dring et al. (1997) showed that a H wall is also present around

E Eri, and Wood and Linsky (1997b) found eviden:e for hydrogen walls around the

high velocity stars 61 Cyg A and 40 Eri A. Thus the inclusion of solar and stellar

hydrogen wall absorption when the viewing angles are appropriate is required for
obtaining accurate D/H values.

2.4. SYSTEMATIC ERRORS INTRODUCED BY THE UNKNOWN EMISSION LINE

PROFILE

Another source of systematic errors is the unk1_own stellar Lyman-o emission

line which serves as the "continuum" against which one measures interstellar

absorption. One method for minimizing this problem is to analyze spectroscopic
binary systems observed at opposite quadratures (when the orbital radial velocities

are a maximum) so that the combined stellar emission line profile has a different

shape in the two observations, whereas the inter-;tellar absorption is unchanged.
The additional information provided by the two observations allows one to infer

the intrinsic stellar emission line profiles and t_e interstellar absorption nearly

independent of each other. Linsky et al. (1995) _aad Piskunov et al. (1997) have

used this approach to analyze the LOS toward Capella and HR 1099, and Dring
et al. (1997) have used a similar approach to study the LOS toward a Gem.

High radial velocity stars provide an opportun ty for deriving NH I more accu-

rately from the optically thin line wings than fror_ the saturated core. For the star

Ind, Wood et al. (1996) inferred the interstellar Lyman-c_ wing absorption (see
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................... 9__

Figure 2. A schematic picture of the heliosphere showing the bow shock (where the incoming

interstellar gas flow becomes subsonic), the termination shock (where the solar wind becomes sub-

sonic), the heliopause surface dividing the two plasma flows, and the general location of the hydrogen
wall (shaded region) where the inflowing neutral hydrogen is decelerated, compressed and heated

by charge exchange reactions with solar wind protons. The hydrogen wall actually extends into the

heliopause toward the termination shock.

Fig. 3) by reconstructing the stellar Lyman-c_ emission line wings assuming only
that they are symmetric about the stellar radial velocity (-38.9 km s-l).
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Figure 3. Reconstructions of the wings of the Lyman-a line profile of e Ind assuming different values

of log NH ] (numbers next to the dotted lines). The thick soUd lines are polynomial fits to the wings

of the observed Lyman-o profile. The dotted lines are estim_ tes of the intrinsic Lyman-a line wings

for different assumed values of log NH 1. The selected best v tlue for log NH I is that which produces

a stellar emission line centered on the stellar radial velocity, dashed line) (from Wood et al., 1996).

3. Kinematic and Physical Properties of the LISM

Lallement and Bertin (1992) proposed that the Sun lies inside a cloud, which they
called the Local Interstellar Cloud (LIC), because the LOS velocities toward 6

nearby stars observed in ground-based Ca II spectra and the velocity of interstellar

He I flowing into the solar system are consistent _ith a single flow vector. GHRS
spectra of the Mg II and Fe II resonance lines (2 796, 2803, and 2600/_) formed

in the LOS toward other nearby stars (Lallement et al., 1995) confirmed this

picture with the flow vector magnitude 26 + 1 km s-l directed from Galactic
coordinates l = 186 ° 4- 3° and b = - 16° 4- 3° in the heliocentric rest frame. In the

local standard of rest (defined by the motion of marby stars), the LIC flow is from

Galactic coordinates I = 331.9 ° and b = +4.6 °. "[he direction of this flow suggests

that it originates from the expansion of a large sul>erbubble created by supernovae

and stellar winds from the Scorpius-Centaurus (_B Association (Crutcher, 1982;
Frisch, 1995).

GHRS spectra are confirming that the kinerr atical structure of the LISM is

indeed very complex. Most lines of sight show at least one velocity component in

addition to the LIC, even for stars as close as Sirius (2.7 pc) and Procyon (3.5 pc),
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indicating that additional clouds lie outside of the LIC at short distances. Table I
lists the specific clouds now identified on the LOS toward the stars observed with
the GHRS, where L refers to the LIC. In the Galactic Center direction the Sun lies

close to the edge of the G cloud as the c_ Cen stars show interstellar absorption

only at the velocity of this cloud. The Sun also likely lies very close to the edge of
the LIC toward the North Galactic Pole as 31 Comae (Piskunov et al., 1997) shows

only one velocity component that is inconsistent with the LIC vector.
The temperature and nonthermal broadening of interstellar gas can be measured

by comparing line widths of low mass elements (H and D) and high mass elements

(e.g., Mg and Fe). For the LOS to Capella, Linsky et al. (1995) derived T =

7000 + 500 + 400 K and _ = 1.6 + 0.4 ± 0.2 km s- t, where the second uncertainty

refers to the likely systematic errors due primarily to the uncertain intrinsic stellar

emission lines. They also found T = 6900 + 80 + 300 K and _ = 1.21 + 0.27

for the Procyon LOS. Temperatures and turbulent velocities measured for other

LOS through the LIC are consistent with these values. For example, Lallement
et al. (1994) found that T = 7600 + 3000 K and _ --- 1 a+0.6 km s -1 for the LIC"'--1.4

component toward Sirius, and Gry et al. (1995) found that T = 7200 + 2000 K
and _ = 2.0 ± 0.3 km s -t for the LIC component toward _ CMa. Recent analyses

(Piskunov et al., 1997) of the LIC components toward HR 1099, 31 Com,/5 Cet,

and fl Cas yield similar results, and in situ measurements of the LISM H I and
He I atoms flowing through the heliosphere (cf. Lallement et al., 1994) yield

consistent values for the temperature. I therefore conclude that T _ 7000 K and
_ 1.2 km s-1 in the LIC.

Other clouds have different parameters. The G cloud, for example, is cooler with
T = 5400+500 K and _ = 1.20+0.25 km s- l along the LOS to c_Cen. Component
2 toward _ CMa is also cooler with T = 3600 + 1500 K and _ = 1.85 + 0.3 km s- 1

(Gry et al., 1995). Hotter gas is inferred for several clouds toward e CMa and for

some of the gas toward Sirius (Bertin et al., 1995).

4. A Summary of What is Now Known about D/H in the LISM

Table I lists all of the published D/H values derived for different clouds along
the LOS toward nearby stars with GHRS observations. Quantities in parenthesis

are assumed rather than derived and are not included in the subsequent analysis.

Figure 4 shows the derived D/H ratios for 12 stars with interstellar radial velocities

indicating that their LOS pass through the Local Interstellar Cloud (LIC) and 7

stars with LOS that pass through other nearby warm clouds. The mean value for the
LIC is (D/H) -- ( 1.50 + 0.10) × 10-5 and the + 1_r error bars for all 12 data points

are consistent with the mean value. The horizontal and dashed lines in Figure 4

show the mean relation for all data points, (D/H) - (1.47 + 0.18) x 10-5. This

figure shows that there is no trend in the D/H ratios with distance. Figure 5, in
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Figure 4. D/H ratios for interstellar gas toward all nearby stars observed with the GHRS. Diamond
symbols are for gas in the LIC and square symbols are for o_.herwarm clouds. The solid and dashed
horizontal lines represent the mean value of D/H and the 4-17 error of the mean for all data points.

which the same data are plotted with respect to Galactic longitude, shows that there

is no trend with Galactic longitude either.

The LIC data lead me to conclude that the ralue of D/H in the tiny region

of the Galaxy occupied by the LIC is constant imd reasonably well known, but

we are just beginning to sample more distant ines of sight which may show
different D/H ratios. The data for the other clouds are more scattered with (D/H) _-

(1.28 + 0.36) x 10-5. Whether or not this scatter represents measurement errors

or indicates real D/H differences between the LIC and the other clouds can only

be answered with more high quality observations obtained with FUSE and STIS.

FUSE will observe the less opaque high Lyman lines and thus permit us to study
D/H further out in the Galactic disk, in the Gah ctic halo, and along some LOS

toward active galactic nuclei. These spectra will be a challenge to analyze compared
to the GHRS spectra because the resolution (10-12 km s- l) and S/N will be lower

and the LOS toward the more distant targets wiil be complex. Nevertheless, we
look forward to analyzing the FUSE data after the launch of the satellite scheduled
for October 1998.
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Wood for the many discussions and collaborations upon which this review is based.
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